NETWORK CONNECTION STANDARD
(Distribution Code)

Requirements for connecting to the distribution system of
WEL Networks
August 2017
IMPORTANT

This network connection standard is a working document.

It may be subject to change from time to time to reflect industry changes and changes to comply with legislation and good industry practice.

Such changes may take place without prior notice to users of this standard. However, changes are recorded.

As a user of the WEL network it is your responsibility to ensure that you possess the most up to date version (the version of this document is shown on the next page).

Copies of this network connection standard can be downloaded from the WEL website: www.wel.co.nz or may be obtained from WEL by contacting us on 0800 800 935 option 3.
<table>
<thead>
<tr>
<th>Doc. Code</th>
<th>Doc. Title</th>
<th>Issue No.</th>
<th>Description of Changes</th>
<th>Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCS</td>
<td>Network Connection Standard</td>
<td>Rev0</td>
<td>Original issue</td>
<td>J van Brink 1 May 2009</td>
</tr>
<tr>
<td>NCS</td>
<td>Network Connection Standard</td>
<td>Rev1</td>
<td>Clarifications to metering sections</td>
<td>J van Brink 13 Aug 2009</td>
</tr>
<tr>
<td>NCS</td>
<td>Network Connection Standard</td>
<td>Rev3</td>
<td>General update to reflect changes in the industry and associated standards</td>
<td>Tas Scott 19 May 2014</td>
</tr>
<tr>
<td>NCS</td>
<td>Network Connection Standard</td>
<td>Rev3.1</td>
<td>Amendments to 2.7 – Connection of Streetlight circuits</td>
<td>Paul Goslett 6 Oct 2014</td>
</tr>
<tr>
<td>NCS</td>
<td>Network Connection Standard</td>
<td>Rev3.2</td>
<td>Update of metering requirements for New Connections</td>
<td>Paul Blue 29 Mar 2016</td>
</tr>
<tr>
<td>NCS</td>
<td>Network Connection Standard</td>
<td>Rev3.3</td>
<td>Clarify of metering requirement for Distributed Generation</td>
<td>Paul Blue 31 Jul 2017</td>
</tr>
<tr>
<td>NCS</td>
<td>Network Connection Standard</td>
<td>Rev3.4</td>
<td>Section 5 Meter box size requirement further elaborated based on public feedback</td>
<td>Paul Blue 8 Aug 2017</td>
</tr>
</tbody>
</table>
CONTENTS

1 GENERAL .. 6
 1.1 Introduction .. 6
 1.2 Scope .. 6
 1.3 Status of this Standard ... 6

2 NEW CONNECTIONS .. 7
 2.1 Introduction .. 7
 2.2 Ownership Boundary Responsibilities .. 7
 2.3 Arranging a New Connection .. 9
 2.4 Arranging for electrical reticulation in a new subdivision .. 9
 2.5 Upgrading (and downgrading) Existing Connections ... 9
 2.6 Connection of Distributed Generation ...10
 2.7 Connection of Streetlight Circuits ...11

3 NETWORK DESIGN AND CONSTRUCTION .. 12
 3.1 General ... 12
 3.2 Network Extensions Built for WEL ... 12
 3.3 Connecting Subdivisions to WEL’s Network ... 12
 3.4 Design standards and technical specifications ... 12
 3.5 Ownership of Existing Poles and Lines ... 12

4 INSTALLATIONS .. 13
 4.1 Access and Easements .. 13
 4.2 Electrical Protection .. 13
 4.3 Fault Level Considerations .. 14
 4.4 Interfering with the Operation of WEL’s Network or Other Installations 14
 4.5 WEL Owned Substations on Connected User Premises .. 15
 4.6 Relocation or Removal of WEL’s Plant or Equipment .. 16
 4.7 High Voltage Installation Owners ... 16
 4.8 Reconnection of Existing Premises .. 16
 4.9 Demolition or Removal of Existing Premises .. 16
 4.10 Final Meter Reading of Existing Premises .. 16
 4.11 Temporary Disconnection for Safety Reasons ... 17
 4.12 Trees ... 17
 4.13 Hazards ... 17

5 METERING EQUIPMENT .. 17

6 SERVICE LEVELS .. 19
 6.1 Security of Supply ... 19
 6.2 Quality of Supply ... 19

7 NETWORK OPERATION .. 20
 7.1 Connected User Service .. 20
 7.2 Provision of Information ... 20
 7.3 Planned Interruptions .. 21
 7.4 Disconnections .. 21
 7.5 Unplanned interruptions ... 21
 7.6 Emergency load shedding .. 22
 7.7 Civil emergencies ... 22
8 LOAD MANAGEMENT ... 22
 8.1 Introduction ... 22
 8.2 Connected Users’ Responsibilities .. 22
 8.3 WEL Networks’ Responsibilities .. 23

9 DEFINITION OF TERMS ... 23
1 GENERAL

1.1 Introduction

This Network Connection Standard summarises the requirements which must be complied with by anyone connecting equipment to the WEL Networks distribution system and also provides guidance on how we manage our electricity network. It is relevant to all stakeholders in WEL Networks business (hereafter referred to as WEL) including electricity retailers, users, developers, contractors, consultants and shareholders.

1.2 Scope

This document covers standards for connections, network design and construction, connected user installations, metering equipment, service levels, network operation and load management.

For the definition of terms refer to Section 9 – Definitions of terms.

While this standard contains some specific details on technical matters, it serves as a guide to other documentation on WEL standard practices, procedures and policies.

All of these are available from the WEL website www.wel.co.nz or by contacting us on 0800 800 935 option 3.

1.3 Status of this Standard

This standard substantially sets out WEL’s current procedures and practices, which may be modified or amended at our discretion, subject to WEL at all times meeting all necessary legislative and regulatory obligations. When this standard is modified or updated, unless stated otherwise, any new requirements are effective from the date of issue, and apply to any new connections or other modifications from this date onwards. Users of this standard should ensure that they have the current issue.

If you intend to rely on the terms of this standard and incur expenditure you should first check with WEL that it is appropriate to do so in your particular circumstance.

This standard does not of itself create any legal obligations between WEL and any other party except to the extent that any other agreements require compliance with this standard by WEL, the electricity retailer or the connected user.

Connected users, in their contracts with electricity retailers, are also required to comply with certain provisions of this standard. This is necessary for safety reasons and for the efficient operation of our network.

Enquiries in relation to this network connection standard should be directed to:

GM Asset Management
WEL Networks Ltd
114 Maui Street, Te Rapa
PO BOX 925, Hamilton, New Zealand
Telephone: +64 7 850 3100
Facsimile: +64 7 850 3210
2 NEW CONNECTIONS

2.1 Introduction

Before connecting any new home or business to the electricity network, WEL must be satisfied that the connection can be made safely, without adversely affecting the delivery of electricity to other connected users.

All new connections to our network, or increases in load beyond an existing agreement or increases to existing mains fuse/protection devices are made at our discretion. There must be sufficient capacity and a suitable configuration available.

The steps in the connection process are set out in this document, which covers the process for permanent connections, as well as temporary connections for construction purposes.

The installation and livening of a connection must be carried out by an approved contractor who is authorised by WEL.

2.2 Ownership Boundary Responsibilities

As defined in Section 3 of the Electricity Act 1992 the point at which the “Works” owned and operated by WEL stop and the “Electrical Installation” owned by the connected user commences is called “the Point of Supply (POS)”.

Where the voltage at the POS is other than a low voltage (400V/230V) connection e.g. 11 kV or 33kV, the POS demarcation is defined in a specific agreement between WEL and the customer. Although generally all assets and fittings on the distribution side of the POS belong to WEL, while those on the customer’s side belong to the customer, there are some exceptions i.e.:

- WEL will own and maintain certain equipment on a connected user’s premise, including a Smart Box and/or load control relays. The connection equipment at the POS location shall comply with WEL’s Design and Construction standards and shall incorporate a means to allow WEL to disconnect a user.
- For High Voltage connections between the WEL distribution system and the connected user’s system the POS will be subject to specific written agreement between the two parties. Note the normal connection arrangement where transformers owned by WEL are located on private property is for the POS to be located at the LV output of the transformer.

The POS for LV service “Mains” is defined as follows:

1. The primary defining feature is the last LV fuse before the service “Mains” enters a building.
2. Where the fuse is in the road reserve or other public area, the point at which ownership changes from WEL to private is at the property boundary of the customer, whether it is an overhead or underground service.
3. Where the LV fuse is located inside a private property the ownership transition is at the fuse and the pole or pillar where the fuse owned by WEL is mounted.

The above is defined in the diagram below for various cases.

If there are cases that are not covered, then WEL will determine them on a case by case basis.

WEL does not record the detailed location of customer owned “mains” cables or overhead line fittings.
2.3 Arranging a New Connection

WEL no longer provides unmetered temporary connections (also known as “builders’ supplies”).

Before work to establish a new connection to our network can start, WEL needs to be satisfied that the network configuration at the location is suitable and sufficient capacity of electricity is available to supply the new connection.

If there is not sufficient network capacity, the network may need to be upgraded to meet the regulatory standards for quality of electricity to the new connected user or existing nearby connected users. The party seeking the new connection may be required to contribute some or all of the cost of this work.

Before a permanent connection is constructed and livened the following information must be supplied

- a completed and signed electricity application form supplied to WEL via your Electricity Retailer (http://www.wel.co.nz/Forms/New-connectionchange-to-loadtemporary-connection/)
- evidence of compliance with statutory electrical regulations and codes of practice (i.e. a Certificate of Compliance)
- for residential connections, a meter box as per detail size requirements in Section 5.

WEL advise that after the 1st Oct 2017, new installations that are requested to be Metered and Livened onto the WEL’s network area, that **DO NOT** comply with the above size requirements, **WILL NOT BE CONNECTED**.

Once our requirements have been met, a retailer has taken responsibility for the connection, and the application form has been processed, approval of the connection capacity will be confirmed in writing and WEL will assign an ICP number.

All New Connections from 1 April 2016 are required to have meters installed that are capable of downloading half hour (HHR) data for revenue purposes.

Note: Wherever possible connected users should design their installation to take advantage of ripple control. This can result in significant savings in ongoing delivery charges.

For larger or more complex new connections to the network, WEL will discuss any specific requirements with the applicant and may require a specific agreement. More details are available from our web site or by contacting us on 0800 800 935 option 3.

2.4 Arranging for electrical reticulation in a new subdivision

The initial application can be made using the electricity application form:

- Application for New/Increased Load Supply (http://www.wel.co.nz/Forms/New-connectionchange-to-loadtemporary-connection/) but it is preferable to contact us first on 0800 800 935 option 3.

For new subdivisions WEL will arrange for an appropriate person to discuss the proposal with the applicant.

2.5 Upgrading (and downgrading) Existing Connections

If the load at an existing connection is to be increased (or decreased) an application must be made for the change in capacity. This ensures the adjusted load does not exceed the capacity available at the
POS. It is also necessary to determine if the network has sufficient capacity to supply this additional load within the voltage levels required by regulation. This application may be on the same form as used in 2.3. A downgraded installation will ensure that now spare network capacity or equipment can be utilised by other users.

2.6 Connection of Distributed Generation

General

Distributed Generation (DG) means equipment that is used for generating electricity that is connected to a distribution network and capable of exporting energy into the network (even if an actual export seems unlikely). Any generating plant that is intended to be operated while synchronized to the network is deemed to be capable for exporting energy. (Generation used for localized or islanded purposes is excluded).

DG examples include solar photo voltaic (PV), wind, gas, diesel and biomass. The capacity of DG can vary across a wide range, e.g. from small scale domestic PV system of several kW connected via inverter system, to a large scale commercial wind farm of tens of MW connected via dedicated HV substations.

Installing distributed generation can be complex and has a wide range of implications including safety, network performance and power quality, all of which may require further investment in the network prior to connection.

WEL is supportive of the development of safe and reliable distributed generation within our network. WEL’s policies and procedures call for an application to be made to WEL before any connection can be made to the network in accordance with the requirements of Part 6 of the Electricity Industry Participation Code.

Any agreement to connect distributed generation to our network may include costs associated with design, safety and reinforcement of the existing network. If network modifications are required, the design and schedule for this project work will need to be factored into your installation planning and/or costing.

The customer must supply as-built details before a connection is made.

Metering Requirements

WEL will arrange for a smart box to be installed at each DG site where the DG is connected at LV. This can also be used as a revenue meter for import and export at the discretion of the Retailer or for compliance checking purpose.

Refer to Section 5 for details.

Protection Requirements

In general, the distributed generator must be equipped with the appropriate protection elements as required by the “EEA Guide for the Connection of Generating Plant”. Distributed generator owners must consult WEL with regard to any special arrangements or protection that may be necessary due to the characteristics of the network.

The technical requirements for distributed generation connected to the network via an inverter system must meet the requirements of AS4777:2005 Part1-3 and in the future AS/NZS4777 Part1-2 (yet to be released).
Connection Process

If you are interested in making an application to connect distributed generation, please view our website for information pack and further details or contact WEL’s Customer Services team on 0800 800 935 option 3.

2.7 Connection of Streetlight Circuits

All proposed streetlight connections must be approved by WEL prior to commencement of construction. WEL will not connect any street light circuits unless the design is first vetted and approved by its engineers. WEL will assume ownership of streetlight circuits up to the point of supply being the fuse base at each street lighting standard. Only WEL has the authority to liven street light circuits.

In order to expedite this processing, WEL requires all parties wishing to connect streetlights, as well as the associated consultants or contractors, to submit the proposed design and drawings (regardless of the number of lights to be connected). The design will be checked to ensure it meets all WEL’s standards and design specifications. Once the design review is completed WEL will advise of any changes required to meet WEL standards. A revised design must then be submitted to WEL for final acceptance and approval.

In parallel with the submission of the design for verification to the WEL, an application for new supply or increase in load (as per section 2.3) (http://www.wel.co.nz/Forms/New-connectionchange-to-loadtemporary-connection/) must be submitted to the nominated retailer who has to confirm back to the network that they accept the change in connection.

Where WEL is completing the electrical design, a street light layout diagram is required. Where a design is undertaken by a party other than WEL, the full streetlight design including electrical design and details of lamp fitting loads must be submitted to WEL for approval. Allow a minimum of 14 days for the turnaround of all applications.

Prior to commencement of construction, WEL must be notified of the project programme and actual construction dates. This is to enable WEL representatives to undertake site visits to ensure that the installation complies with WEL standards. Only then will WEL allow the installation to be connected to its network.

The installation shall comply with WEL’s Design and Construction Standard (relevant sections of this standard are available on request). Please note that all new or modified streetlight information is required to be recorded with the relevant roading authorities’ database. WEL reserves the right to request this information for audit purposes.

On completion of the work and prior to livening by WEL, WEL requires the following:

- An approved application for new supply or increase in load
- Provision of a signed Co Coe ESC
- Submission of all associated as-builts (to be approved by WEL)
- Confirmation of 224c sign off from the appropriate authority. This relates directly to the transfer of ownership of the street light columns, and associated future billing

As-built documentation shall be submitted to WEL in accordance with Section 7.2 “Provision of information” of this document.
Please note that if circuits are connected without proper authorisation, WEL reserves the right to disconnect.

All applications can be made to Customerprojects@wel.co.nz.

3 NETWORK DESIGN AND CONSTRUCTION

3.1 General

WEL has detailed and comprehensive standards for design and construction to ensure that the network is safe and conforms to statutory requirements as well as license conditions placed on an owner and operator of an electricity network.

All WEL owned network extensions must comply with our design standards. Where the network extension is to be owned and operated by a party other than WEL, we require sufficient details to ensure the new network is electrically safe to be connected and will not impinge on existing users.

3.2 Network Extensions Built for WEL

Where WEL requires an extension to our network, we will ensure that it will comply with our design and construction standards by rigorous review of the design proposals and subsequent auditing of the construction work.

To ensure consistent work quality, all work is carried out by “in-house” personnel or by authorized contractors.

3.3 Connecting Subdivisions to WEL’s Network

For new subdivision reticulation projects close liaison is required with us during design and construction. This liaison ensures that adequate reinforcement of our network can be executed where necessary in order to supply the subdivision load.

Where the subdivision is to become part of our network, it must be constructed in accordance with our design and construction standards to meet our requirements.

3.4 Design standards and technical specifications

WEL’s Design and Construction Manual and technical specifications incorporate the latest industry standards and practices and are regularly updated. Distribution of the standards is via “Controlled Copies”, which are issued to relevant WEL personnel as well as approved consultants and contractors. At WEL’s discretion uncontrolled extracts may be issued as required by the nature of the work.

3.5 Ownership of Existing Poles and Lines

The ownership of poles and lines is complex, mostly because of historical reasons. Poles that carry 33kV lines and/or 11kV distribution lines (and may additionally carry 400V lines) are always owned by WEL, irrespective of their location (including private property). Poles on private
property that carry 11kV and/or 400V lines dedicated solely to the owner of that property are generally not owned by WEL. Ownership of 400V poles and lines on a “right-of-way” varies. See diagram in Section 2.2.1.

WEL and potentially other service providers (e.g. Chorus Ltd) own poles on roadways and rights-of-way. Where there are sets of poles on both sides of the road, generally, WEL owns the poles on the side of the road that carry the main lines. Poles on the opposite side of the road that carry the lines owned by these service providers as well as WEL’s lines are generally owned by the other service provider. Any crossarm carrying WEL lines is owned by WEL. WEL will or has entered into an explicit agreement with these service providers governing ownership and maintenance of these poles.

The respective owners have the responsibility for safety and maintenance of their poles (and lines).

For specific lines, clarification can be obtained by contacting WEL’s Customer Services team on 0800 800 935 option 3.

4 INSTALLATIONS

An “installation” is the electrical equipment on the connected user’s premises, excluding appliances. The connected user owns the installation and is responsible for providing and maintaining it. The design, construction, maintenance and operation of installations must be compatible with the requirements of our network. All installations shall comply with AS/NZS3000. See definitions in this standard as well as the Electricity Act for further clarification.

4.1 Access and Easements

Some parts of WEL’s network and associated equipment are located on private property, including equipment such as metering and/or control equipment fitted to the connected user’s meter board. WEL’s right to have equipment located on private property (other than equipment and metering and control equipment fitted as of right to the meter board as covered under WEL’s Use of System Agreement with the Electricity Retailer) may be covered by either an easement or lease agreement. If neither exists, legal rights are governed by sections 22, 23, and 35 of the Electricity Act 1992 for network equipment installed prior to 1 January 1993. The present practice for the installation of new WEL owned network equipment on private property is for an easement to be established to protect the right of WEL for access to operate and maintain the equipment.

In general, WEL requires access to private property on a limited basis for the future maintenance and operation of equipment. Where possible, contact will be made with the occupier prior to entry on to the premises. However, in an emergency, access may be required at any time without prior contact with the owner. The occupier shall ensure that 24 hour unobstructed access is available, so WEL can access its assets and respond to emergencies without the need to contact any other party.

4.2 Electrical Protection

Electrical protection on each service connection is required to protect personnel and property. Some parameters of protection operation are stipulated in the Electricity Regulations. To ensure correct operation of the equipment, WEL’s protection and the connected user’s protection must be compatible and correctly co-ordinated.

Safeguarding of WEL’s network
Maximum clearance times must be within the limits established by WEL in accordance with protection settings and equipment short circuit ratings.

Safeguarding a connected user’s installation

The electricity supply to a connected user’s installation may be subject to multiple short interruptions caused by switching facilities that may be in use on our network. We will, on request, provide details of auto re-closing or automatic switching facilities, including protection arrangements, so the connected user can take this into account during the design of their installation.

Protection against damage

With certain types of fault protection arrangements on our network one phase of a three phase supply may disconnect. The connected user should therefore ensure equipment such as three phase electric motors are adequately protected, as required by AS/NZS3000, from phase failure, earth faults, surges, overload and over/under voltage.

Discrimination in operating times

Adequate discrimination must be maintained between the operating times of any connected user protection equipment and WEL’s equipment. We may request evidence of satisfactory discrimination.

Protection of distributed generators

For protection of the distributed generation see section 2.6.

Protecting sensitive equipment

Modern electronically controlled appliances are much less tolerant of electrical spikes and surges than older appliances. To reduce the impact of fluctuations on sensitive equipment we recommend that connected users install appropriate surge protection devices as recommended by the equipment suppliers. Protection requirements for electrical installations are covered by AS/NZS3000.

Metering equipment

Refer to Section 5.

4.3 Fault Level Considerations

The short circuit rating of connected user fittings at the POS must not greater than the design fault level of our network. Design fault levels are specified in our design standards and are available on request. It is the responsibility of the electrician designing and/or building any electrical installation to determine all applicable characteristics of the electrical supply as required by Section 1.6.2 “Supply characteristics” of AS/NZS3000.

4.4 Interfering with the Operation of WEL’s Network or Other Installations

Connected users must not take any action or use any equipment that materially adversely affects the supply of electricity to another connected user. Any changes required to the network to mitigate interference caused by a connected user will be at his cost. The starting and operation of certain electrical equipment, particularly motors and associated equipment as well as welding sets, may interfere with the quality of the electrical supply. Connected users can arrange and pay to have a totally independent power supply installed for their own requirements.
Some common sources of power quality issues arising from connected user operations include motor starting, welding sets and capacitors.

Motor Starting

Direct on line (DOL) starting of AC motors causes many supply quality issues. Hence AC motors must be fitted with suitable devices (e.g. soft start/VSD) to limit the starting currents except as follows.

Schedule of exemptions to motor starting limiting devices

<table>
<thead>
<tr>
<th>Type of Motor</th>
<th>Location and Rating</th>
<th>Location and Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td></td>
<td>Residential</td>
<td>Non-Residential</td>
</tr>
<tr>
<td>Single-phase</td>
<td>not exceeding</td>
<td>not exceeding</td>
</tr>
<tr>
<td>0.75 kW</td>
<td>1.5 kW</td>
<td>2.2 kW</td>
</tr>
<tr>
<td>3-phase 400V</td>
<td>not exceeding</td>
<td>not exceeding</td>
</tr>
<tr>
<td>4.0 kW</td>
<td>4.0 kW</td>
<td>7.5 kW</td>
</tr>
</tbody>
</table>

Welding Sets

Welding equipment can interfere with the voltage to other connected users. To minimize this effect the following applies to welding sets:

- Welders exceeding 5kVA input and up to 10kVA should have a power factor of not less than 0.8pf with a secondary voltage of 30V while operating at full load
- Welders exceeding 10kVA input should have a power factor of not less than 0.8pf with a secondary voltage of 30V while operating at half full load.

If these basic requirements prove to be insufficient and still cause power quality issues, connected users may be requested to take further measures, e.g. have WEL provide a separate supply.

Capacitors

Power factor correction capacitors are sometimes installed to ensure that the average power factor of a connected user's load, measured at the POS as the ratio of kWh to kVAh consumed during any 30 minute period, is not be less than 0.95 lagging.

Power factor correction capacitors may interfere with ripple control signals and/or cause harmonic resonance problems. Connected users must operate capacitors so that they do not interfere with the electricity network or the operation of our ripple control system.

4.5 WEL Owned Substations on Connected User Premises

WEL is responsible for the repair and maintenance of substation equipment and buildings that it owns on private property.
Where the substation building is the property of a user, they are required to maintain it in a condition acceptable to WEL to ensure the protection and safety of personnel and equipment. WEL is responsible for the maintenance of their equipment. The user must co-ordinate with us for access to carry out any maintenance of WEL equipment. Requirements for new substations are as documented in the Design Standards.

4.6 Relocation or Removal of WEL’s Plant or Equipment

The party requesting the relocation or removal of any WEL plant or equipment from its existing position should contact WEL at the planning stage. Most plant or equipment can be relocated or removed, provided sufficient advance notice is given and all our requirements are met.

The party requesting the relocation will be responsible for all costs associated with moving WEL’s plant or equipment.

4.7 High Voltage Installation Owners

Owners and/or operators of High Voltage installations are required to co-ordinate their operating actions with WEL with regard to the connection, operation and modification of their installation and must comply with our operating standard “Networks Outage and Access, Management, Permits and Switching” (NOAMPS) which is available on request. In addition, all personnel physically operating the High Voltage installation must have a current authorisation and must be authorised to carry out this operation.

Where the privately owned HV installation is operated by WEL, a formal Memorandum of Agreement covering network control, operation and emergency maintenance services will be required.

4.8 Reconnection of Existing Premises

Existing connected users must contact an electricity retailer to arrange for reconnection of their premises.

4.9 Demolition or Removal of Existing Premises

Connected users must contact their electricity retailer to arrange for the removal of the connection to their premises. The retailer will ensure that meters and relays are removed and accounts are finalised and will contact WEL to arrange for a permanent disconnection. All WEL owned equipment shall be returned to WEL networks. WEL will disconnect and isolate installations that are to be demolished or relocated.

4.10 Final Meter Reading of Existing Premises

Connected users must contact their electricity retailer to arrange a final meter reading at their premises.
4.11 **Temporary Disconnection for Safety Reasons**

If requested, WEL will disconnect the supply temporarily for safety reasons. This could include carrying out water blasting, painting, repair of roofing or spouting close to overhead connections to the premise or digging close to underground connections.

Contact us on 0800 800 935 option 3 for further details.

4.12 **Trees**

Trees near power lines can be a safety hazard. It is the responsibility of the property owner to keep trees on their property clear of power lines. WEL requires owners to ensure that trees and vegetation on their premises are trimmed or cut back in accordance with the Electricity Regulations 2003 (Hazards from trees) to prevent interference with our network equipment and the electricity supply. The owner is liable to WEL for all damage to our network caused by their trees and vegetation.

If WEL believes that trees or vegetation on a property are either interfering or likely to interfere with our network, we will request (by issuing a Cut Notice) that the owner removes the threat or potential threat. If the work is not completed within the specified time on the Cut Notice, WEL may undertake the required work at the owner’s cost.

Trimming of trees near power lines must be carried out by a qualified person. Details are available from our web site or by contacting us on 0800 800 935 option 3.

4.13 **Hazards**

Members of the public or connected users who discover any hazards or dangerous situations on or around our network, should advise their electricity retailer or contact us on 0800 800 935 option 3

WEL has a brochure on safety this can be downloaded from the WEL web site. Copies may be obtained by contacting us on 0800 800 935 option 3

5 **METERING EQUIPMENT**

Unless otherwise contracted, the quantity of electricity delivered through the POS to the connected user’s premises will be measured by metering equipment installed according to the Electricity Industry Participation Code (EIPCs).

Metering equipment shall be provided in accordance with the relevant Use of System Agreement (UoSA) and shall be to EIPC standards. All metering equipment installed at connected user premises must comply with EIPC standards in order to qualify for any pricing or commercial incentives WEL offers to connected users. All New Connections from 1 April 2016 are required to have meters installed that are capable of downloading half hour (HHR) data for revenue purposes.

WEL reserves the right to install a smart box in series with any revenue meters on all installations for network monitoring and management purposes, as well as load control devices (either in the form of separate load control devices or as an integral part of a smart box) and the customer must allow for this installation and provide sufficient space in the meter board to enable this installation.

The connected user shall not interfere with any metering equipment, WEL’s Smart Box, or the connections to the metering equipment without the prior written consent of the Metering Equipment
Provider, or (in the case of Smart Boxes) WEL, except to the extent that emergency action has to be taken to prevent injury to personnel or damage to property proximate to the metering equipment. Should this happen, the connected user shall inform the relevant Metering Equipment Provider, WEL, and the electricity retailer in writing as soon after as is practicable.

Where we own high voltage switchgear dedicated to supply a specific connected user, an agreement may be required for us to provide measuring transformers (voltage and current transformers) for metering purposes. This equipment must be designed and tested to comply with the connection capacity and the requirements of the EIPCs.

Meter Box Size

The following meter box sizes are required before the connection can proceed.

- **Residential**
 - For a single phase installation - *minimum* 400x600x225mm deep
 - For a three phase installation - *minimum* 500x650x225mm deep
 - The dimensions above are for the *meter compartment area* only and do not include the areas for any sub-circuit fusing.
 - If there is no sub-circuit fusing, then the above may be regarded as the overall meter box sizes.
 - If sub-circuit fusing will be installed, then a larger meter box shall be used to accommodate the extra space required by the sub-circuit fusing.

- **Non-residential**
 - Actual meter box sizes may vary, thus the following *spare space within the meter box* shall be made available
 - Category 1 metering - A minimum spare space of 250x180x225 deep, for *each meter used by the ICP* that is installed this meter box.
 - Category 2 metering - A minimum spare space of 250x180x225 deep, and space to allow for the installation of a separate set of metering CT, for *each meter used by the ICP* that is installed this meter box.

WEL advise that after the 1st Oct 2017, new installations that are requested to be Metered and Livened onto the WEL’s network area, that *DO NOT* comply with the above size requirements, *WILL NOT BE CONNECTED*.

WEL will centrally manage and coordinate load control switching on behalf of electricity retailers and customers. Where the electricity retailer or any other party elects to install metering equipment which includes either ripple relays and/or programmable switching, in addition to or as agreed in place of, WEL’s control receivers (including ripple relays and load control receivers fitted to WEL’s Smart Box) relays, the electricity retailer or third party will ensure it meets and maintains required functionality and performance levels.

Metering for Distributed Generations

All DG sites shall have import/export meter installed for compliance monitoring purpose.

- A DG that exports with no intention to be paid for its generated electricity (‘gifting’) will still require an import/export meter.

Exemptions may be considered and will require approval by WEL.
6 SERVICE LEVELS

WEL’s targeted delivery service levels are described in the WEL Asset Management Plan (AMP) and in the UoSA.

The resulting delivery service performance is published in WEL’s disclosures, pursuant to the Electricity (Information Disclosure) Requirements 2004.

Copies of the above documents are available from our website and on request by contacting us on 0800 800 935 option 3

The service level topics covered in these documents include:

6.1 Security of Supply

The WEL distribution system is designed to meet the security standards as described in the WEL AMP.

We will attempt to provide continuous delivery, but cannot guarantee that there will be no interruption to your supply. When an interruption occurs we will endeavour to minimize the duration.

6.2 Quality of Supply

WEL’s network is operated in compliance with the Electricity (Safety) Regulations. We will endeavour to ensure that flicker, voltage sags, voltage surges, spikes and electrical noise, harmonics, inter-harmonics and other disturbances are controlled within the network to avoid disturbance to connected users' equipment.

Voltage and frequency standards

Voltage and frequency standards are governed by the Electricity (Safety) Regulations 2010, Clause 28 & 29, which require:

The supply of electricity to electrical installations operating at a standard low voltage of 200 volts AC or more, but not exceeding 250 volts AC, to be at the standard low voltage and except for momentary fluctuations, must be kept within 6% of that voltage calculated or measured at the POS.

For WEL’s network, the standard nominal low voltage is 230 volts AC between phase and neutral. Hence the limits at the POS are 216.2 volts to 243.8 volts.

The supply of electricity to electrical installations operating at other than standard low voltage to be at a voltage agreed between the electricity retailer and the connected user, and, unless otherwise agreed between the electricity retailer and the connected user, and must be maintained within 6% of the agreed value except for momentary fluctuations calculated or measured at the POSs.

The frequency of electricity supplied by any person must be maintained within 1.5% of 50Hz, except for momentary fluctuations. (This requirement may be varied for electrical installations operating at other than standard low voltage, if the electricity supplier and the connected user agree.)

Connected user generated Harmonics

Distortion of the system voltage waveform caused by certain types of equipment may result in annoyance to other connected users of our network or damage to connected apparatus. In order to limit these effects connected user’s loads connected to our network shall comply with the following:
Meet the requirements of Reg. (31) (1) of the Electricity (Safety) Regulations 2010 such that the use of any fittings or electrical appliance will not interfere with the satisfactory supply of electricity to any other Connected user.

The harmonic content of any load shall be maintained within the limits of the New Zealand Electrical Code of Practice for Harmonic Levels (ECP36:1993) and any subsequent amendments. In general we require that the equipment complies with the clauses of AS/NZS 61000.3 relevant to the equipment capacity and demonstrate compliance for the connection to the Network by the application of the EEA Power Quality Guide.

Motor starting shall comply with the Committee Report on Motor Starting Current for AC Motors published by the ESANZ Engineer’s Institute (now EEA) February 1982 and subsequent amendments; Copies of this report are available from the EEA.

Ripple injection

We operate ripple injection plants for load control and other purposes. The ripple carrier frequencies are 283 and 500 Hz. To ensure the correct operation of our mains signalling equipment, the connected user must design and operate any equipment connected to our network so that it does not interfere with the operation of WEL’s ripple control system.

Additional superimposed signals

Connected users must not superimpose signals on WEL’s network without our prior written agreement, which may be withheld at our discretion. Any equipment that uses the mains for communication must comply with IEC61000-3-8.

7 NETWORK OPERATION

We operate our network in compliance with the Electricity Regulations and in accordance with our Terms of Supply, and good industry practice.

7.1 Connected User Service

Information on connected user services can be found on our web site. This includes sections on services available, WEL contacts and FAQ (Frequently asked Questions)

7.2 Provision of Information

Records

We retain engineering information about our network. This is made available to authorised parties on request, but cannot be disclosed to third parties without written consent from WEL. Details about the availability of information can be obtained by calling WEL on 0800 800 935 option 3.

Plant Location

Contractors or anyone else who needs to work where underground services are likely to be located, should apply to the WEL Customer services team by contacting us on 0800 800 935 option 3 to get
record plans. We offer a service to physically locate our cables. There may be a cost associated with this.

Where 33kV sub-transmission cables are involved, we will mark out the cables and may oversee the work to ensure safety. There may also be a cost associated with this.

As-built records
Contractors installing a new network are required to provide “as-built” records in accordance with our drafting standards which are available on request from our Customer Services team. Contact WEL on 0800 800 935 option 3 for further details. WEL may, at its sole discretion, require that a complete set of as-buils are submitted before an installation is commissioned or connected to the network. Where contractors find an error in any existing WEL as-built documentation the contractor must report the error to WEL, in order for WEL to correct it.

7.3 Planned Interruptions
From time to time WEL may need to interrupt or reduce the delivery to any POS either totally or partially for any period as necessary; usually to carry out repairs, maintenance or alteration to the network.

In the event of an interruption to or reduction of delivery, WEL will:

Where practical seek agreement with the connected user on the timing of the interruption to or reduction of delivery, with a view to minimising the disturbance to the connected user and as far as reasonably practicable, schedule Planned Service Interruptions to minimise disruption to Consumers;

Use all reasonable endeavours to notify the connected user in advance of its intentions to interrupt or reduce the delivery. Notice may be by a combination of advertising in local newspapers, radio announcements, letterbox drop, phone, fax, or email;

Use all reasonable endeavours to minimise the period of interruption or reduction to delivery.

7.4 Disconnections
If WEL believes there is immediate danger to any person, electrical lines, cables, machinery, equipment or other plant or property, we may, without notice to the connected user, immediately interrupt or reduce delivery either totally or partially for any period we deem necessary to remove the danger.

7.5 Unplanned interruptions
From time to time, events outside our control cause a loss of electricity supply.

WEL will use all reasonable endeavours to restore the supply to connected users. We observe the following restoration priorities which may be altered at our discretion:

- Removal of any life threatening situations.
- Restoration of supply to essential services, specifically:
 - Hospitals
 - Emergency services (ambulance, fire, police)
- Sewerage
- Water supplies.

7.6 Emergency load shedding

For the safe operation of our network, at times it is essential to carry out load shedding during an abrupt reduction in frequency. This is normally carried out automatically in blocks and it is not possible to isolate individual connected users from any load shedding block (however consideration is given to essential services in the network configuration). Where connected users have critical loads, they should make provision for their own stand-by generation.

7.7 Civil emergencies

We have an obligation to carry out certain civil emergency duties in relation to our network. In such emergency situations the actions of WEL and all parties connected either directly or indirectly to our network will be governed by the procedures laid down in the relevant portions of the Civil Defence Emergency Management Act – 2002. In such circumstances WEL may be directed as to the priority for restoration of supply to connected users or groups of connected users. In extreme circumstances WEL may even be directed to disconnect supplies.

8 LOAD MANAGEMENT

8.1 Introduction

WEL Networks has a load control system to enable it to manage its load to optimise the utilisation of the distribution system and for tariff purposes. Load control will be carried out by the WEL load control systems.

WEL may operate its load control system at any time without notice to the connected users or the electricity retailers.

In order to qualify for any line charges based on load control signals, these signals must be controlled by WEL.

The use of any aggregated load control devices needs to be first agreed with WEL and can only be used in accordance with a Use of System Agreement and Load Control Protocols. In particular, Aggregated Load Control equipment must not interfere with WEL’s equipment and because restoration has the potential to damage equipment or disrupt WEL’s ability to provide a reliable and quality supply the restoration must be coordinated with WEL.

8.2 Connected Users’ Responsibilities

Connected users may connect any equipment or plant to the load control system, which shall be permanently wired.

It is the connected users responsibility to provide;
Sufficient space on the metering panel for the WEL Smart Box, if needed a WEL load control relay and
The electricity retailer’s metering and associated equipment and
Any wiring required beyond the meter.
If the load connected to the load control system is greater than 3kW the load shall be connected
through a sealable relay/contactor provided by the connected user and housed in the metering panel.
Connected users are to ensure that their load connected to the load control system does not interfere
with any of WEL’s load control signals.
Prior to installation of any 3rd Party load control device the 3rd party must have entered into an
agreement with WEL.
Where power factor correction equipment is to be installed or altered, the effects on the load control
signal shall be determined by:
Signal tests to be carried out prior to the capacitor bank installation or alteration. These should be done
at the metering point.
After alterations, repeat tests in i). There should be little or no change in the test results. If the tests
show significant signal drain, then the installation or alteration should be disconnected and the problem remedied

NOTE: Ripple frequency blocker devices should be installed to minimise interference. WEL can provide
advice on specific requirements.

The connected user shall maintain any contactors and all other equipment or plant and wiring in good
working order to meet the requirements of the Regulations and Electrical Codes of Practice as may be
applicable:

8.3 WEL Networks’ Responsibilities
For connected users who elect to take a controlled supply, WEL may provide and install a load control
relay in addition to the WEL Smart Box.

WEL will maintain the Smart Box and any WEL owned load control relay in good working order.

9 DEFINITION OF TERMS
In this Network Connection Standard any reference to an act, statute, regulation, published act or code
of practice shall be construed as a reference to the most recent version or amendment unless
specifically agreed to by WEL.

The following terms shall have the following meanings:

Act - the Electricity Act 1992;
AMP - Asset Management Plan- a 10 year management plan for WEL’s network;
Connected user (or user) – a purchaser of electricity (from an electricity retailer) that is delivered over WEL’s network;

Connection Agreement - an agreement between the retailer and another party for establishing a connection or modification of an existing connection;

Delivery - the transportation of electrical energy at 50Hz to the connected user via WEL’s network;

Delivery services - the provision of line function services;

Distribution network (or network) - WEL's system for the conveyance of electricity including all fittings comprising that system and which terminates at the user’s POS;

Design Standard - a document issued by WEL that specifies our standard design for an aspect of our network;

ECP - an electrical code of practice issued pursuant to the Act;

EIPC - Electricity Industry Participation Code

Electricity Authority

Electrical installation -

(a) means—

i) in relation to a property with a point of supply, all fittings beyond the point of supply that form part of a system that is used to convey electricity to a point of consumption, or used to generate or store electricity; and

ii) in relation to a property without a point of supply, all fittings that form part of a system that is used to convey electricity to a point of consumption, or used to generate or store electricity; but

(b) does not include any of the following:

i) an electrical appliance:

ii) any fittings that are owned or operated by an electricity generator and that are used, designed, or intended for use in or in association with the generation of electricity, or used to convey electricity from a source of generation to distribution or transmission lines:

iii) any fittings that are used, designed, or intended for use in or in association with the conversion, transformation, or conveyance of electricity by distribution or transmission lines

Electricity trader or electricity retailer - is the party selling or intending to sell electricity to the user;

Emergency – In general, an emergency is a situation where there is an unforeseen severe shortage of capacity. This may include actions carried out by WEL to prevent impending loss of supply or impending risk of safety to public or personnel, or damage to equipment.

Fittings - are everything used or designed or intended for use, in or in connection with the conversion, transformation, conveyance or use of electricity;

HV - high voltage means a voltage above 1,000 volts, generally 11,000 volts, for supply to connected users;
ICP - an Installation Control Point is a point of connection at which a customer installation is connected to a network other than the HV grid and is nominated as the point at which the retailer will be deemed to have supplied electricity to a connected user or generator, and having the attributes defined in the EIPCs;

Installation or connected user’s installation - means any fittings owned or used by a connected user (except WEL’s equipment) and that form part of a system for conveying electricity from the connected user’s POS to where the electricity may be consumed;

Line function services - is as defined in the Act and means the provision and maintenance of fittings for the conveyance of electricity and the operation of such fittings, including the control of voltage and responsibility for losses;

LV - Low voltage, means a voltage of value up to 1,000 volts, generally 230 or 400 volts for supply to connected users;

Major user - the person purchasing the delivery service from WEL at a major user connection;

Major user connection - means a connection to WEL’s network where this classification is agreed to by WEL that generally does not require or share the use of the low voltage network for delivery of electricity;

Operating standard - is a document issued by WEL that specifies our standard procedure for operating a part of our network;

POS - point of supply, in relation to a property, means the point or points on the boundary of the property at which exclusive fittings enter that property, except that,-

(a) if there are both high voltage lines and a transformer owned by the electricity distributor on the property, the point of supply is the point at which electricity from the transformer enters exclusive fittings; or

(b) if there are non-exclusive fittings on the property, the point of supply is the point at which those fittings become exclusive fittings; or

(c) if the exclusive fittings on the property are owned by a consumer that is a tenant or licensee of the owner or occupier of the property, the point of supply is the point at which those exclusive fittings enter the area leased or licensed by the consumer; or

(d) if there is specific agreement that any other point on the property is the point of supply, the point of supply is the agreed point;—

and, in this definition,-

exclusive fittings means fittings used or intended to be used for the purpose of supplying electricity exclusively to that property

high voltage lines means lines conveying electricity at a voltage of 1,000 volts or more

property -

(a) means the land within the boundary where the electricity is consumed:

(b) includes the whole of the property, if the property is occupied wholly or partially by tenants or licensees of the owner or occupier:

(c) includes the whole of any property that has been subdivided under the Unit Titles Act 2010

specific agreement may be an agreement -

(a) entered into by -
i. the existing consumer; or
ii. any person with a greater interest in the property than the consumer (such as the consumer's landlord); or
iii. any Body Corporate under the Unit Titles Act 2010 or the registered proprietor of the land to which the unit plan relates; and
(a) entered into by the electricity distributor or the electricity retailer; and
(b) entered into before or after the date on which this provision comes into force

Premises or connected user's premises - means the land and buildings owned or occupied by a connected user, and any land over which the connected user has an easement or right to pass electricity;

Smart Box - WEL’s network management and customer information system that is connected to users and strategic network assets, and is accessible via a two-way communications network, capable of providing near real time information and control of the distribution network, and is able to connect to the Distributor’s network management control system. Smart Boxes are also fully certified smart meters under EIPC and can provide other parties with register readings and certified half hourly energy consumption data for revenue billing and reconciliation purposes and enable controllability of and information display in the customer’s premises.

Technical specification - is a WEL document that specifies technical requirements for plant that is to be connected to our network.

Use of System Agreement (UoSA) - an agreement for delivery services between WEL and an electricity retailer or major customer.

Works -

(a) means any fittings that are used, or designed or intended for use, in or in connection with the generation, conversion, transformation, or conveyance of electricity; but
(b) does not include any part of an electrical installation