

ENABLING OUR COMMUNITIES

CONTENTS

1 INTRODUCTION	2
1.1 – Purpose of this Document	3
2 MATERIAL CHANGES	4
2.1 - Material Changes to Network Development Plan	5
2.2 - Material Changes to Asset Lifecycle Management	6
2.3 - Material Changes to Customer Driven Works	7
2.4 - Material Changes to Asset Management Practices	7
2.4.1 Changes in the Management of Overhead Lines	8
2.4.2 Smart Meter Data Analytics	8
2.4.3 Maintenance Systems Review	9
2.5 - Material Changes to Expenditure Forecasts	10
Schedules 11a and 11b - Forecast Expenditure	10
Schedule 12a - Asset Condition	11
Schedule 12b - Forecast Capacity	11
Schedule 12c - Forecast Network Demand	11
Schedule 12d - Forecast Interruptions and Duration	11
3 SCHEDULES	12
Schedule 11a - Report in Forecast Capital Expenditure	13
Schedule 11b - Report on Operational Expenditure	17
Schedule 12a - Report on Asset Condition	18
Schedule 12b - Report of Forecast Capacity	20
Schedule 12c - Report on Forecast Network Demand	21
Schedule 12d - Report on Forecast Interruptions and Duration	22
4 DIRECTOR CERTIFICATION	23

INTRODUCTION

1 INTRODUCTION

WEL Networks Ltd (WEL) supplies electricity to the Northern Waikato and small networks in Cambridge and Auckland. Hamilton is the main electrical load centre. Outside of Hamilton the network area is predominantly rural.

Our network is more than 6,580 km in length and is comprised of more than 200,000 individual asset components. Within the network we maintain and operate 26 zone substations and 17 switching stations (11kV) to enable a reliable supply of electricity to our customers.

WEL is owned by the WEL Energy Trust. As a community owned company we consider our stakeholder requirements to have utmost importance. Accordingly we have considerable focus on identifying and meeting stakeholder expectations.

We have targeted our renewal and maintenance programmes based on our assessment of asset health, condition and risk. This has resulted in an asset base that is in good condition, with the assets that present the highest risk being targeted for replacement.

Good asset management is central to achieving our vision, strategic and business plans and the performance outcomes, and therefore significant effort is placed on continually improving our asset management practices and building our capability.

1.1 - PURPOSE OF THIS DOCUMENT

The Asset Management Plan (AMP) describes the nature and characteristics of our assets and investment requirements by providing an overview of our asset management planning, systems, procedures and practices.

A significant amount of work was put into the 2015 and 2016 AMPs to;

- improve the readability and usability of the document,
- ensure that the projects put forward are in line with our key initiatives,
- challenge the anticipated future development assumptions,
- apply risk management tools to our decision making process, and
- ensure that the projects can withstand commercial analysis.

Due to the effort undertaken in the last two years, there are only minor changes proposed this year. For this reason, this document represents an update to WEL's 2016 AMP, which is a comprehensive document relating to the electricity distribution services supplied by WEL and is available online via wel.co.nz

The 2017 AMP Update should be read in conjunction with the 2016 AMP, which contains a greater level of detail. For the purpose of the 2017 AMP Update we have not attempted to duplicate the detailed explanations as set out in the full 2016 AMP.

The 2017 AMP Update covers the planning period from 1 April 2017 to 31 March 2027 and provides the latest information relating to our key initiatives, performance, forecast network and non-network investments and our long-term strategies for asset management.

MATERIAL CHANGES

2 MATERIAL CHANGES

This section provides a summary of the drivers and rationale for changes to our forecasts, schedules and any material changes to network development plans, asset lifecycle plans and asset management practices. Section 3 contains Schedules 11a-12d.

Overall, there is a 0.8% increase in total network capital expenditure (asset renewal, network development and customer driven projects) across the 10 years compared to the 2016 budget. *The main changes are outlined below*.

2.1 - MATERIAL CHANGES TO NETWORK DEVELOPMENT PLAN

The main changes to our Network Development Plan are outlined in the Table 2.1 below. Overall there has been a slight decrease in the 10 year expenditure profile compared to 2016 for network development.

Table 2.1 Material Changes to the Network Development Plan

Year	Cost	Description of changes
2017/18	-\$300k	Review of the arc flash projects resulted in the cancellation of some of the proposed project.
2017/18	-130k	Transfer of fibre projects to 2025/26.
2017/18	-280k	Decrease in distribution transformer and LV feeder upgrades.
2018/19	146k	Installation of check meters at Pukete and Windfarm to assist in event analysis.
2025/26	100k	Planning and consenting of the 3 rd Chartwell transformer brought forward.
2025/26	130k	Transfer of fibre budget from 2017/18.

2017 WEL 11 Year Network Development Expenditure Projection

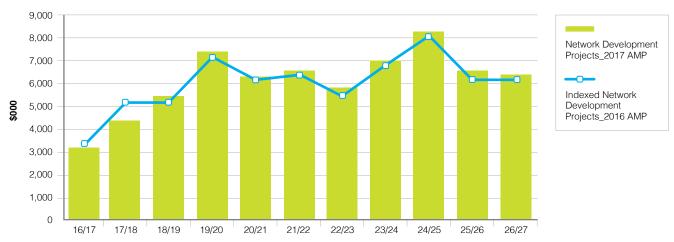


Figure 2.1: 2017 WEL 10 Year Network Development Expenditure Projection

2.2 - MATERIAL CHANGES TO ASSET LIFECYCLE MANAGEMENT

The main changes to our Asset Life Cycle Management are outlined in Table 2.2 below. These items are considered to have had the most impact where either timing and/or cost has been modified thereby affecting the future expenditure profile.

Overall there has been an increase in the renewal expenditure for 2017/18 and 2018/19 compared to the 2016 10yr expenditure profile, with the remaining 8 years tracking at a similar total to 2016 forecasts (see Figure 2.2 below).

Table 2.2 Material Changes to the Asset Renewal Expenditure Programme

Year	Cost	Description of changes
2017/18	\$596k	Transferred from 2016/17 to 2017/18 for replacement of 16mm copper on Wallace circuit CB5.
2018/19	\$1.1M	Increase in protection relays due to issues identified with Claudelands feeder protection circuits.
2018-27	\$2.15M	Increase in Ring Main Units (RMU) replacement due to safety issues identified in 2016/17.
2018-27	-\$1.2M	Reduction in cross-arm replacement due to Failure Mode, Effects and Criticality Analysis (FMECA).
2018-27	-\$2.5M	Decrease in reconductoring budget over 10yr period, due to smarter mitigation on spur lines.
2018-27	\$1M	\$100k per annum increase in capitalised faults.

2017 WEL 11 Year Asset Renewal Expenditure a Projection

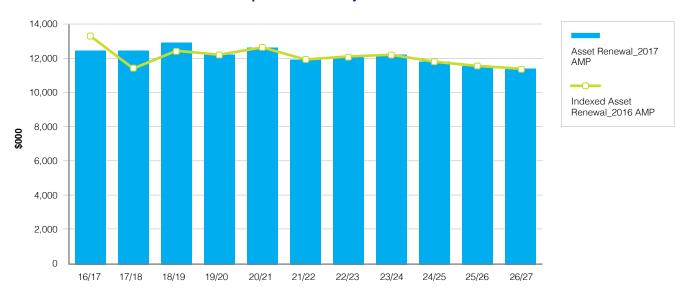


Figure 2.1: 2017 WEL 10 Year Network Development Expenditure Projection

2.3 - MATERIAL CHANGES TO CUSTOMER DRIVEN WORKS

The main change to our Customer Driven Works are outlined in Table 2.3 below. Overall there has been a slight increase in the 10 year expenditure profile compared to 2016 for network development.

See Section 2.4 of this AMP update for further detail.

Table 2.3 Material Changes to the Customer Driven Works

Year	Cost	Description of changes
2017/20	\$800k	Increase due to increased connection rate.

2017 WEL 11 Year Customer Driven Expenditure Projection

Figure 2.3: 2017 WEL 10 Year Network Development Expenditure Projection

2.4 - MATERIAL CHANGES TO ASSET MANAGEMENT PRACTICES

Our approach to asset management is continuing to evolve. We have identified that we need to continuously improve and build additional capability. There have been some changes to our asset management practices that underpin the development of this AMP update. In particular, changes to the management of overhead lines and the use of smart meter data analytics as outlined in the following section.

2.4.1 Changes in the Management of Overhead Lines and Ring Main Units

We are changing our use of live line practices to align with the changes proposed by the Electrical Engineers Association and the wider industry. These changes will alter the assessment process that determines whether to undertake an activity with the line energised using live line practices or to de-energise the line and undertake the work in an isolated and earthed state. These changes are likely to result in more work being undertaken de-energised. This will have a detrimental impact on our System Average Interruption Duration Index (SAIDI) performance.

We are increasing the maintenance we undertake on our Ring Main Units (RMU). This is to ensure that the RMUs remain reliable and safe to operate.

This will have a detrimental impact on our SAIDI performance.

The overall impact of these changes is still to be determined, however we have made an allowance for these and will revaluate during the year, as detailed in section 2.5.

2.4.2 Smart Meter Data Analytics

Use of smart meter data analytics has played a lead role in realising many benefits across our network including operational efficiency, improved customer service, savings on capital expenditure as well as potential benefits to health and safety.

Approximately 70% of WEL Networks ICPs (Installation Control Point), have a WEL-owned smart meter installed.

WEL has gained significant expertise in smart meter data analytics, which ensures that accurate information is used as the basis for decision making processes across the network. For any meter WEL can retrieve and log metering information such as power (imported and/or exported),

reactive power (imported and/or exported), current, voltage and power factor.

WEL continues to experience many benefits to network management processes and practices using smart meter analytics, including;

- Proactive Voltage Correction,
- Reduction in Response Time,
- Improved Network Flexibility,
- Reduction in Capital Expenditure, and
- Establishing a Centre of Excellence.

These are detailed further below.

Proactive Voltage Correction

Smart meters allow WEL to identify faults and issues with the network, determine the cause of the fault, categorise the expenditure type and prioritise the work. The main advantage of this is improved service to our customers. WEL is also able to poll and log data from the meters remotely at 11 second intervals. This enables us to effectively data log: voltage, current, power and power factor at a customer's premises remotely. Therefore for Low Voltage Complaints (LVC) and other issues which require investigation, this can be achieved without the need to visit the site and install data loggers. It also removes the risk of data logger malfunction and the additional delays this causes.

Reduction in Fault Call Outs

We are able to connect to a smart meter and obtain an instantaneous reading of voltage and current. Customer Service Representatives use this when we receive a call of part or no power to determine if the fault is on the network side of the meter or within the customer's installation. This has significantly reduced the number of faults that our staff need to attend, this reduction is illustrated in Figure 2.4.2. The cost saving to WEL has been approximately \$60k per annum.

See Figure 2.4.2

Number of Call-outs Attended Due to Fault Within Customer Installation

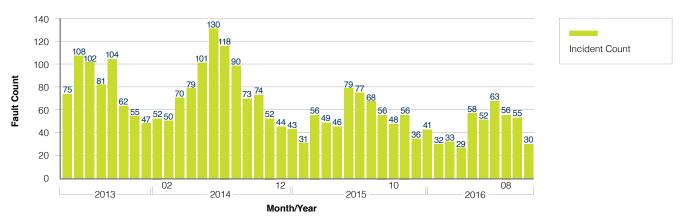


Figure 2.4.2: Number of faults attended by WEL fault staff, which were caused by faults within the customer's installation

Reduction in Response Time

When power is lost to a smart meter it sends out a communication to inform WEL that power has been lost, this is referred to as "last gasp". This signal is fed into our NMS (Network Management System) and simulated as a customer call creating a no power incident. This provides the operator with immediate notification of an outage. This can then be actioned and fault staff dispatched directly to the correct fault site, prior to any fault calls being received from the public. From our experience this has resulted in a 45 minute average reduction in response time and often we have been able to have staff on site prior to any customer notification.

Centre of Excellence

WEL is currently developing the systems to become a centre of excellence for smart meter data analytics.

Improved Network Flexibility

Having the ability to obtain an instantaneous measurement of voltage has improved the flexibility of our network. This can be used to increase the proportion of the network that is back-fed during both planned and unplanned outages.

Reduction in Capital Expenditure

By using smart meter analytics WEL has been able to improve our asset management decision making. This has resulted in WEL reducing capital expenditure over the ten year AMP period by \$9.2M. A complete summary of changes to capital expenditure over the 10 year period is shown in Section 2.5 of this AMP update.

2.4.3 Maintenance Systems Review

WEL has identified that there is an opportunity to improve the efficiency and effectiveness of maintenance processes. In 2016, a comprehensive review was carried out alongside a review of the SAP system, the WEL enterprise management tool.

The outcome from this review has been the development of a 2-stage improvement project. The first stage has been approved and a delivery plan is being developed.

Stage 1 includes improving the data structure within SAP and GIS (Geographic Information System), including a backlog review and cleanse, to ensure information

can be obtained and structured into reports to inform business decisions. (For example Reliability, Scheduling and Compliance). The proposed timeline for Stage 1 is 6 months.

The main impact to forecasts resulting from this work is on Non-network Operational Expenditure and is summarised under Section 3 of this AMP update.

It is anticipated that this work will provide the foundation for further improvements through more detailed projects, as well as the update of our maintenance strategy, which will be reflected in future editions of our AMP.

2.5 - MATERIAL CHANGES TO EXPENDITURE FORECASTS

While there have been no significant changes to the methodology used to develop our expenditure forecasts, it is worthwhile noting our approach to FMECA (Failure Mode, Effect and Criticality Analysis) methodology for common modes of failure for distribution assets has been revised.

Outcomes from this exercise have been mapped against feeder and asset class 'reliability' (in terms of incurred SAIDI). This has allowed us to more accurately highlight common modes of failure that have caused significant reliability impacts. These have been categorised as 'Condition Related (CR)' and 'Non-Condition Related (NCR)' faults which have provided better understanding on the type of faults.

Schedules 11a and 11b - Forecast Expenditure

Forecast operating expenditure remains consistent with our 2016 AMP. The change in forecast as shown in figure 2.5 is predominantly due to a change in accounting structure during the audited disclosure.

Forecast capital expenditure is tracking above our 2016 AMP along most of the 10 year expenditure profile. The drivers for this have been discussed in the previous sections.

2016 AMP v 2017 AMP

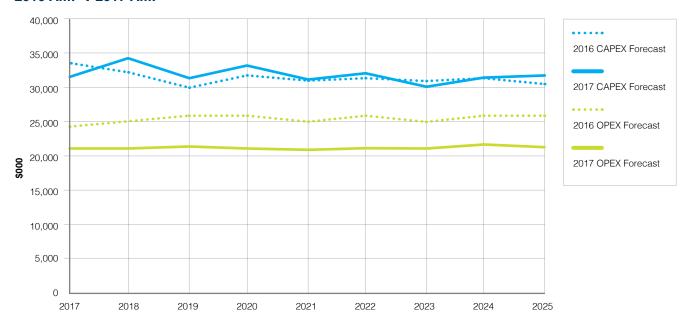


Figure 2.5: Network Forecast Expenditure

Schedule 12a - Asset Condition

A significant review of our Asset Maintenance Practices is currently being undertaken and is detailed in section 2.4.3.

Minor updates in our forecast asset conditions have been provided for in the 2017 Schedules. For a handful of assets, the schedules indicate an increase in the percentage of assets due to be replaced within the next 5 years. These include: voltage regulators (distribution transformers), distribution switchgear Ring Main Units and distribution circuit breakers (pole mounted) reclosers and sectionalisers (compared to 2016 AMP forecasts).

As per our 2016 AMP, data accuracy classifications remain consistent.

Schedule 12b - Forecast Capacity

Forecast network capacity remains consistent with that outlined in our 2016 AMP.

Schedule 12c - Forecast Network Demand

Forecast network demand remains consistent with that outlined in our 2016 AMP.

Some minor adjustments for the current (2017) year include: less business connections, an increase in low voltage connections and a reduced number of medium voltage connections.

Schedule 12d – Forecast Interruptions and Duration

The forecast interruption has increased to allow for the change in the live line work assessment process and the RMU maintenance requirements as discussed section 2.4.1. While the full impact is still to be determined, a 10 minute increase has been forecast to account for the change.

In the past 3 years we have not achieved our unplanned SAIDI target. This is largely due to the target for third party damage being set too low. We have realigned the third party target to the average value for the regulatory reference period 1 April 2004 to 31 March 2014. This is an increase of 5.8 minutes. However to ensure that pressure remains on improving our rural reliability other components within the unplanned SAIDI target have been reduced to limit the overall increase of the unplanned SAIDI target to 1.7 minutes. This gives an unplanned SAIDI target by 2020 of 62.7minutes, which is 5 minutes less than the target value using the regulatory reference period of 1 April 2004 to 31 March 2014.

SCHEDULES

SCHEDULE 11A - REPORT IN FORECAST CAPITAL EXPENDITURE

AMP Planning Period Company Name

WEL Networks 1 April 2017 – 31 March 2027

nominal dollar terms. Also required is a forecast of

This school-te requires a breakdown of forecast expenditure on assets for the cament disclosure year and a 10 year planning period. The forecasts should be consistent with the supporting information set out in the AMP. The forecast is to be expressed in both constants price the value of communicated assets (i.e., the value of AMP difference between constant price and nominal default forecasts of expenditures on assets in Schedule 14a (Mandatory Explanatory Robes).

This information is not pure to audited decisious information.

SCHEDULE 11a: REPORT ON FORECAST CAPITAL EXPENDITURE

Sch ref

	11a(i): Expenditure on Ass	Consumer connection	System growth	Asset replacement and re	Asset relocations	Reliability, safety and envi	Quality of supply	Legislative and regulati	Other reliability, safety	Total reliability, safety an	Expenditure on network ass	Expenditure on non-netw	Expenditure on assets		plus Cost of financing	less Value of capital contributi	plus Value of vested assets		Capital expenditure forecas		Assets commissioned	
90	9)	10	11	12	17	77	15	36	17	18	39	20	21	22	23	7,	22	36	27	25	23	

ets Forecast

Assets commissioned		
Assets co		

Legislative and regulatory Other reliability, safety and emiron fotal reliability, safety and environm Expenditure on non-network assets teliability, safety and environment Asset replacement and renewal penditure on network assets Consumer connection Quality of supply Asset relocations System growth

enditure on assets

Energy efficiency and demand side management, reduction of energy k ubcomponents of expenditure on assets (where known) Overhead to underground conversion Research and development

	Current Year CY	CV+1	CV+2	CV+3	CY44	CNeS	5+V2	CN+7	CYAS	CVv9	CY+20
for year ended	31 Mar 17	31 Mar 18	31 Mar 19	31 Mar 20	31 Mar 21	31 Mar 22	31 Mar 23	31 Mar 24	31 Mar 25	31 Mar 26	31 Mar 27
	\$000 (in nominal dollars)	(lars)									
	10,666	10,056	9,757	9,495	9,583	9,882	10,036	10,262	10,469	10,705	10,945
	973	1,439	2,375	4,843	4,431	6,034	4,375	5,299	6,548	4,926	5,406
	12,598	12,622	13,518	12,978	13,728	13,347	13,776	14,192	14,186	14,388	14,679
	3,451	3,001	1,487	1,220	1,093	1,118	1,143	1,169	1,195	1,222	1,249
	966	1,494	1,688	1,794	1,802	1,755	1,843	1,919	1,984	1,970	2,014
	11	302	21	251	55						
	858	1,574	1,746	1,090	1,114	1,739	1,165	1,191	1,218	1,245	649
	1,567	3,170	3,455	3,135	2	3,494	3,008	3,110	3,202	3,215	2,663
	29,255	30,288	30,592	31,671	31,806	33,875	32,338	34,032	35,600	34,456	34,942
	2,227	4,488	1,878	2,871	2,459		2,041	2,128	2,216	2,309	2,405
	31,482	34,776	32,470	34,542	34,265	6	34,379	36,160	37,816		37,347
	877	514	86	86	86	86	3%	86	86	86	88
	6,997	4,757	3,639	3,317	3,535	3,646	3,702	3,785	3,861	3,948	4,037
	25,258	30,533	28,929	31,323	30,828	32,287	30,775	32,473	34,053	32,915	33,408
	32,617	31,581	30,628	31,680	32,233	33,275	32,727	33,536	35,230	34,991	35,084
for year ended	Current Year CY 31 Mar 17	21 Mar 18	21 Mar 19	31 Mar 20	31 Mar 21	31 Mar 22	21 Mar 23	21 Mar 24	31 Mar 25	31 Mar 26	31 Mar 27
	\$000 (in constant prices)	lices)									
	10,666	9,835	9,331	8,882	8,765	8,841	8,782	8,782	8,762	8,762	8,762
	973	1,407	2,271	4,530	4,053	5,398	3,828	4,534	5,480	4,032	4,328
	12,598	12,345	12,930	12,140	12,559	11,942	12,054	12,145	11,873	11,777	11,751
	3,451	2,934	1,423	1,141	1,000	1,000	1,000	1,000	1,000	1,000	1,000
	866	1,461	1,615	1,679	1,649	1,571	1,612	1,642	1,660	1,612	1,612
	11	100	20	235		,	,	•	•	•	•
	558	1,539	1,669	1,019	1,019	1,556	1,019	1,019	1,019	1,019	819
	1,566	3,100	3,304	2,933	2,718	3,127	2,631	2,661	2,679	2,631	2,131
	29,255	29,621	29,259	29,626	2	30,308	28,295	29,122	29,794	2	27,972
	2,227		2,019	2,816				1,821	1,855	1,890	1,925
	31,482	34,010	31,278	32,442	31,065	32,062	30,081	30,943	31,649	30,092	29,897
losses	216	342	342	342	342	342		342	342	342	342
	6	510	200	800	800	800	905	200	800	800	900

Corporate price forecasts Corporate price pric	31 Mar 24 1,254 1,722 1,722 1,722 2331	1,480 1,707 1,707 1,083	31 Mer 26 894 894 894 894 894 894 894 894 894 894	31 Mar 27 2,183 2,183 1,078 2,978 402 402 6,970 4400 7,450
Compare Section Compare Se	1,254 547 1,722 143 231		7 K	2,32 2,93 2,93 2,43 2,43 4,44 4,44 4,44 4,44 4,44 4,4
Comparison of	547 1,722 143		2 3	2.90 2.90 2.90 3.90 6.90 7.40 7.40
Compact Comp	1,722		K	2.20
District Contract C	231		<u> </u>	24 45 45 45 45 45 45 45 45 45 45 45 45 45
Politiconnect: Poli	231	wi s	S	25 25 26 26 26 27 27,45 27
Compact	231	জ ভ	S S	6,09 6,09 7,48
10 12 13 15 15 15 15 15 15 15		र्भा ज	<u> </u>	53 53 44 7,45
10 25 25 25 25 25 25 25 2		IST IST	1 3	13 6,99 6,97 8,44 8,44 8,44 8,44 8,44 8,44 8,44 8,4
1	146	M 0	<u> </u>	53 6,93 7,44
### State	377			6,93 44 7,445
Content Vessets Content Vess CT Content Ve	4.043		Ш	7,44
Current Vear of Current Vear Cr Cr Cr Cr Cr Cr Cr Cr	255			7,44
Contract Floar CY Crival	4,298			
cection Guirent Veac CY CVi-1 CVi-2 CVi-3 CVi-4 CVi-6 of by ED6** SCOO (in constant prices) 31 Mar 17 31 Mar 18 31 Mar 20 31 Mar 21 31 M				
ection 33 Main 21 31 Main 23 31 Main 24 31 Main 24<				
Sood (in constant prices) Sood (in constant prices)				
7,992 7,369 6,638 6,144 6,334				
S215 475 462 457 451				
1,901 1,90				
Voltage 31VV Volt				
10,666 9,835 2,300 1,0				
Second Control Contr				
### reeded ### 10,666 9,835 9,331 8,882 8,766 ### 20,048 6,779 6,541 6,282 6,096 ### 20,048 6,779 6,541 6,282 6,096 ### 20,048 6,779 6,541 6,282 6,096 ### 20,048 6,048 6,048 6,096 ### 20,048 6,048 6,048 6,096 ### 20,048 6,048 6,096 6,096 ### 20,048 6,096 6,0				
### 10,666 9,835 9,331 8,882 8,796 presidence connection 4,513 3,056 2,790 2,600 2,670 2,6				
unding consumer connection 4,518 3,056 2,790 2,600 2,670 ss capital contributions 6,048 6,779 6,241 6,282 6,096 capital contributions 0,048 6,779 6,241 6,282 6,096 capital contributions 0,049 0,079 0,096 0,096 capital contributions 0,079 0,079 0,096 0,096 capital contributions 0,07 0,096 0,001 0,097 0,096 capital contributions 0,097 0,097 0,097 0,096 0,097 0,096				
6,046 6,779 6,341 6,282 6,096 6,096 100 100 100 100 100 100 100 100 100 10				
415 118 707 2,790 1,801 60 60 91 18 707 2,790 1,801 91 18 18 707 2,790 1,801 91 18 18 18 18 18 18 18 18 18 18 18 18 18				
415 318 707 2,790 1,801 60 60 818 707 2,790 1,801 818 818 818 818 818 818 818 818 818				
415 118 707 2,750 1,801 (60 -				
415 118 707 2,790 1,801 60 - 7 331 - 331				
60				
Olstribution and LV cables 500 500 1,000 2,500				
Distribution substations and transformers 35 30 10				
198 225 170				
450 1,004 829 1,				
System growth expenditure 973 1,407 2,271 4,530 4,053 5,336				
ing system growth				
System growth less capital contributions 4,530 4,053 5,398				

	for year ended	31 Mar 17	31 Mar 18	31 Mar 19	31 Mar 20	31 Mar 21	31 Mar 22
11a(iv): Asset Replacement and Renewal		\$000 (in constant prices)	rices)				
Subtransmission		74	80	11	π	11	TT.
Zone substations		263	450	400	344	584	217
Distribution and LV lines		7,273	6,789	7,313	7,773	7,773	7,773
Distribution and LV cables		764	1,103	1,188	1,188	1,188	1,167
Distribution substations and transformers		1,473	1,399	837	837	837	837
Distribution switchgear		1,464	1,693	1,562	1,511	1,562	1,583
Other network assets		1 288	861	1.553	410	538	288
Asset replacement and renewal expenditure		12 598	12.345	12 930	12.140	12 559	11 942
face Canital contributions funding accet ranjanant and rangual		280	190	190	190	100	190
4		43 340	13166	072.04	020	40 300	44 753
Asset replacement and renewal less capital contributions	_	12,310	12,133	15,740	DCC*TT	14,503	75/175
		Current Year CY	5	690	5,60	7	2445
	for year ended	31 Mar 17	31 Mar 18	31 Mar 19	31 Mar 20	31 Mar 21	31 Mar 22
11a(v):Asset Relocations							
Project or programme*		\$000 (in constant prices)	rices)				
Relocations		2,119	545	200	200	200	200
Transit Hamilton Bypass		1,004	1,409	423	141		
Longswamp		1	470			Ī.	
Undergrounding		6	510	200	200	200	200
Transit Huntly Bypass		319					
*include additional rows if needed							
All other project or programmes - asset relocations							
Asset relocations expenditure		3,451	2.934	1.423	1.141	1.000	1.000
fess Capital contributions funding asset relocations		2.099	1.597	059	467	525	525
-		2004	2000	200	100	100	25.5
Asset relocations less capital contributions	_	1,352	1,33/	1/3	6/4	4/5	4/5
		Current Year CY	CV+1	CV+2	CV+3	CV+4	CV+S
	for year ended	31 Mar 17	31 Mar 18	31 Mar 19	31 Mar 20	31 Mar 21	31 Mar 22
11a(vi):Quality of Supply							
Project or programme*		\$000 (in constant prices)	rices)				
Distribution Transformer and LV Feeder Upgrade projects							
Identified vis Smart Meters		784	1,205	1,459	1,573	1,543	1,465
Power Quality - Works required to correct customer complaints		203	205	105	55	55	55
Network Work Ugrade Due To DG applications		11	51	51	51	51	51
Include additional rows if needed							
All other projects of programmes - quality of supply							
ð		866	1,461	1,615	1,679	1,649	1,571
less Capital contributions funding quality of supply							
					1 570	4 5.40	1 571

CY+5 31 Mar 22		[T			ľ	ľ		CY+5 31 Mar 22			Ī	T	Ī		537	1,019		T	T	T			1,556		1,556	CY+5				403	986	100	261			1.754				T	T	T				1,754
C/+4 31 Mar 21			90					80	5	3	CY+4 31 Mar 21								1,019							1,019		1,019	CY+4				300	908	230	534			1,969										1,969
CY+3 31 Mar 20		135	100					235	236		CY+3 31 Mar 20								1,019							1,019		1,019	C/+3				305	1,534	230	747			2,816										2,816
C/+2 31 Mar 19		20						20	00		CY+2 31 Mar 19				467	146	30		1,019	17						1,669		1,669	C/+2				800	1,098	230	191			2019										2,019
C/+1 31 Mar 18	loos)	read	100					100	100		CY+1 31 Mar 18	1		29	165				1,019	143	S					1,539		1,539	CY+1			cest	195	1,825	583	1,786			4.380										4,389
Current Year CY 31 Mar 17	COOD (in constant ordesc)	and american property	11					11	11		Current Year CY 31 Mar 17		SOUD (in constant prices)	***	200		9			56	12	344				558		258	Current Year CY			5000 fin constant prices)	390	1,234	63	240			2227										2,227
for year ended	Ĭ	,						_			for year ended	`	~_											_	onment	_	ii.	_	for once anded			•								,						, ,		_	
	11a(vil): Legislative and Regulatory	AURIS scheme changes	Seismic upgrades of substations			"include additional rows if needed	All other projects or programmes - legislative and regulatory	3	less Capital contributions funding legislative and regulatory Legislative and mendatory less candial contributions			11a(viii): Other Reliability, Safety and Environment	Project or programme	Access & Wontoring - Video IP Camera	Garden Place Suitriblice Station Befurbishment	ndfarm		Reduce customers on PEACB3by transferring to PEACB6	Reliability projects (mainly Rural Areas)	21	Weavers Sub via resonant earthing (Ground fault neutralizer)	Arc Flash Protection Installation		"include additional rows if needed	All other projects or programmes - other reliability, safety and environment	Other reliability, safety and environment expenditure	less Capital contributions funding other reliability, safety and environment	Other reliability, safety and environment less capital contributions		11afiv): Mon. Noturnik Accote	114(ix): Noil-InetWork Assets	Project or acocamme*	Computer Equipment	Computer Software	Plant and Equipment	Motor Vehicles		"Include additional rows if needed All other projects or programmes, pruiting accounting	Routine expenditure	Atvoical expenditure	Project or programme*						All other projects or programmes - atypical expenditure	Atypical expenditure	Expenditure on non-network assets
135	137	130	140	141	142	146	145	146	142	149		151	725	153	104							155	157	158	159	160	191	162	164		90 5	168	169	170	171	172	173	174	176	177	178	179	180	181	182	184	185	187	188

SCHEDULE 11B - REPORT ON OPERATIONAL EXPENDITURE

WEL Networks 1 April 2017 – 31 March 2027 AMP Planning Period

SCHEDULE 11b: REPORT ON FORECAST OPERATIONAL EXPENDITURE

This schedule requires a breakdown of forecast operational expenditure for the disclosure year and a 10 year planning period. The forecasts should be consistent with the supporting information set out in the AMP. The forecast is to be expressed in both constant price and nominal dollar operational expenditure forecasts in Schedule 14a (Mandatory Explanatory Notes).
This information is not part of sudited disclosure information.

Cur for year ended 3	Operational Expenditure Forecast \$000	Service Interruptions and emergencies	Vegetation management	Routine and corrective maintenance and inspection	Asset replacement and renewal	Network Opex	System operations and network support	Business support	Non-network opex	Operational expenditure	ð	for year ended	poos	Service Interruptions and emergencies	Vegetation management	Routine and corrective maintenance and inspection	Asset replacement and renewal	Network Opex	System operations and network support	Business support	Non-network opex	Operational expenditure	Subcomponents of operational expenditure (where known) Energy efficiency and demand side management, reduction of	energy losses	Direct billing*	Retearch and Development		37 * Direct billing expenditure by suppliers that direct bill the majority of their consumers 38 Cau	for year ended	Difference between nominal and real forecasts	Service interruptions and emergencies	Vegetation management	Routine and corrective maintenance and inspection	Asset replacement and renewal	Network Opex	System operations and network support	Business support	are open	Operational expenditure
Current Year CY 31 Mar 17	5000 (in nominal dollars)	2,271	1,329	1,465	1,622	6,687	3,868	11,079	14,947	21,634	Current Year CY	31 Mar 17	\$000 (In constant prices)	2,271	1,329	1,465	1,622	6,687	3,868	11,079	14,947	21,634		456		966	166	Current Year CY	31 Mar 17		•	1	1		1	1	1	1	
C/+1 31 Mar 18	lans)	2,305	1,349	1,487	1,646	6,787	3,926	11,245	15,171	21,958	CV+1	31 Mar 18	cest	2,271	1,329	1,465	1,622	6,687	3,868	11,079	14,947	21,634		816		1,100	403	CV+1	31 Mar 18		X	R	22	87	300	28 3	334	200	324
CY+2 31 Mar 19		2,339	1,369	1,509	1,671	6,888	3,985	11,414	15,399	22,287	CY+2	31 Mar 19		2,271	1,329	1,465	1,622	6,687	3,868	11,079	14,947	21,634		908		1,100	T/6	C/+2	31 Mar 19		89	40	44	43	107	117	333	704	653
C/+3 31 Mar 20		2,375	1,390	1,532	1,696	6,993	4,045	11,585	15,630	22,623	CY+3	31 Mar 20		2271	1,329	1,465	1,622	6,687	3,868	11,079	14,947	21,634		808		1,100	1/b	CYe3	31 Mar 20		104	61	29	14	300	177	300	660	686
CY44 31 Mar 21		2,410	1,049	1,555	1,722	6,736	4,105	11,759	15,864	22,600	CYM	31 Mar 21		2,271	1,033	1,465	1,622	6,391	3,868	11,079	14,947	21,338		908		1,100	4/1	CY+4	31 Mar 21		139	16	8	100	OK.	237	090	317	1,262
C/45 31 Mar 22		2,446	1,049	1,578	1,747	6,820	4,167	11,935	16,102	22,922	CYS	31 Mar 22		1727	1,033	1,465	1,622	6,391	3,868	11,079	14,947	21,338		908		1,100	176	CY45	31 Mar 22		175	16	113	610	475	299	1 166	4,433	1,584
C/+6 31 Mar 23		2,483	733	1,602	1,774	6,592	4,229	12,114	16,343	22,935	CY16	31 Mar 23		2271	723	1,465	1,622	6,081	3,868	11,079	14,947	21,028		785		1,100	T/b	C/+6	31 Mar 23		212	10	137	761	211	361	1 306	4,3390	1,907
C/+7 31 Mar 24		2,520	733	1,626	1,800	6,679	4,293	12,296	16,589	23,268	C/+7	31 Mar 24		2271	723	1,465	1,622	180'9	3,868	11,079	14,947	21,028		785		1,100	47.1	CN17	31 Mar 24		249	10	191	1/8	236	425	1,643	2007	2,240
CY+8 31 Mar 25		2,558	733	1,650	1,827	6,768	4,357	12,480	16,837	23,605	CY+8	31 Mar 25		2,271	723	1,465	1,622	6,081	3,868	11,079	14,947	21,028		785		1,100	178	C/+8	31 Mar 25		287	10	185	202	/80	489	1,401	1,030	2,577
CY+9 31 Mar 26		2,596	733	1,675	1,855	6'88'9	4,422	12,668	17,090	23,949	CY+9	31 Mar 26		2,271	723	1,465	1,622	6,081	3,868	11,079	14,947	21,028		785		1,100	1/6	64/3	31 Mar 26		325	10	210	233	9//	\$54	2,369	6,149	2,921
CY+10 31 Mar 27		2,635	733	1,700	1,883	6,951	4,489	12,858	17,347	24,298	CY+30	31 Mar 27		2,271	723	1,465	1,622	6,081	3,868	11,079	14,947	21,028		785		1,100	47.1	CY+30	31 Mar 27		364	10	235	000	8/0	621	2,779	2,400	3,270

SCHEDULE 12A - REPORT ON ASSET CONDITION

AMP Planning Period Company Name

1 April 2017 - 31 March 2027 WEL Networks

This schedule requires a breakdown of asset condition by asset class as at the start of the forecast year. The data accuracy assessment relates to the percentage values disclosed in the asset condition columns. Also required is a forecast of the percentage of units to be expenditure on assets forecast in Schedule 11a. All units relating to cable and line assets, that are expressed in km, refer to circuit lengths.

sch ref

									Cata accusa	% of asset forecast to be
Volta	Voltage Asset category	Asset class U	Units	Grade 1	Grade 2	Grade 3	Grade 4	Grade unknown	(1)	replaced in next 5 years
M	Overhead Line	Concrete poles / steel structure	No.	0.32%	3.10%	44.32%	42.26%	10.00%	8	1.87%
M	Overhead Line	Wood poles	No.	3.31%	18.10%	41.13%	27.46%	10.00%	3	36.82%
M	Overhead Line	Other pole types	No.						N/A	
ž	Subtransmission Line	Subtransmission OH up to 66kV conductor	, may			54.87%	45.13%		1	
¥	Subtransmission Line	Subtransmission OH 110kV+ conductor	km						N/A	
ž	Subtransmission Cable	Subtransmission UG up to 66kV (XLPE)	km	0.42%	1.04%	11.74%	86.80%		1	
ž	Subtransmission Cable	Subtransmission UG up to 66kV (Oil pressurised)	km						N/A	
ž	Subtransmission Cable	Subtransmission UG up to 66kV (Gas pressurised)	km						N/A	
¥	Subtransmission Cable	Subtransmission UG up to 66kV (PILC)	km		0.81%	1.21%	97.98%		1	
ž	Subtransmission Cable	Subtransmission UG 110kV+ (XLPE)	km						N/A	
ž	Subtransmission Cable	Subtransmission UG 110kV+ (Oil pressurised)	km						N/A	
ž	Subtransmission Cable		kom						N/A	
ž	Subtransmission Cable	Subtransmission UG 110kV+ (PILC)	kom						N/A	
¥	Subtransmission Cable	Subtransmission submarine cable	km						N/A	
ž	Zone substation Buildings	Zone substations up to 66kV	No.	0.45%	3.84%	16.98%	78.73%		4	
ž	Zone substation Buildings	Zone substations 110kV+	No.						N/A	
ž	Zone substation switchgear	22/33kV CB (Indoor)	No.		1.82%	1.82%	96,36%		4	
¥	Zone substation switchgear	22/33kV CB (Outdoor)	No.		1.82%	1.82%	96.36%		4	
ž	Zone substation switchgear	33kV Switch (Ground Mounted)	No.						N/A	
ž	Zone substation switchgear	33kV Switch (Pole Mounted)	No.			100.00%			4	
ž	Zone substation switchgear	33kv RMU	No.				100.00%		4	
ž	Zone substation switchgear	50/66/110kV CB (Indoor)	No.						N/A	-
ž	Zone substation switchgear	50/66/110kV CB (Outdoor)	No.						N/A	
ž	Zone substation switchgear	3.3/6.6/11/22kV CB (ground mounted)	No.						N/A	
ž	Zone substation switchear	3.3/6.6/11/22kV CB (pole mounted)	No.						N/A	

SCHEDULE 12a: REPORT ON ASSET CONDITION

					Asset cor	idition at start of p	lanning period (pe	Asset condition at start of planning period (percentage of units by grade)	rgrade)		
Voltag	Voltage Asset category	Asset class	Units	Grade 1	Grade 2	Grade 3	Grade 4	Grade unknown	Data accuracy (1–4)	% of asset forecast to be replaced in next 5 years	
¥	Zone Substation Transformer	Zone Substation Transformers	No.		27,08%	8.33%	64,58%		3		
¥	Distribution Line	Distribution OH Open Wire Conductor	kw	13.86%	4.03%	18.33%	63.78%		2	7.43%	
¥	Distribution Line	Distribution OH Aerial Cable Conductor	km						N/A		
ž	Distribution Line	SWER conductor	km						N/A		
¥	Distribution Cable	Distribution UG XLPE or PVC	- wa		10.48%	8.94%	80.59%		1	0.25%	
¥	Distribution Cable	Distribution UG PILC	- wa		10.48%	8.94%	80.59%		1	1.04%	
ž	Distribution Cable	Distribution Submarine Cable	km						N/A		
¥	Distribution switchgear	3.3/6.6/11/22kV CB (pole mounted) - reclosers and sectionalisers	No.	0.91%	3.64%		95.45%		3	59.12%	
¥	Distribution switchgear	3.3/6.6/11/22kV CB (Indoor)	No.	1.60%	10.13%	6.67%	81.60%		4	7.79%	
¥	Distribution switchgear	3.3/6.6/11/22kV Switches and fuses (pole mounted)	No.		35.30%	4.99%	44,72%	15.00%	4	2.44%	
¥	Distribution switchgear	3.3/6.6/11/22kV Switch (ground mounted) - except RMU	No.						N/A		
¥	Distribution switchgear	3.3/6.6/11/22kv RMU	No.	2.90%	16.94%	5.97%	74.19%		3	11.61%	
¥	Distribution Transformer	Pole Mounted Transformer	No.		0.63%	19.82%	59.55%	20.00%	3	1.88%	
ž	Distribution Transformer	Ground Mounted Transformer	No.	0.96%	7.10%	28.30%	43.64%	20.00%	3	5.95%	
ž	Distribution Transformer	Voltage regulators	No.	0.14%	13.13%	29.88%	51.86%	8.00%	3	28.57%	
ž	Distribution Substations	Ground Mounted Substation Housing	No.						N/A		
۵	LV Line	LV OH Conductor	km	11,48%	10.25%	7.61%	70.64%		1	0.06%	
2	LV Cable	LV UG Cable	km		0.24%	29.67%	70.09%		1	0.20%	
۲۸	LV Streetlighting	LV OH/UG Streetlight circuit	- wa		9.58%	17.85%	72.58%		1	0.08%	
A.	Connections	OH/UG consumer service connections	No.						N/A		
A	Protection	Protection relays (electromechanical, solid state and numeric)	No.		34.54%	7.46%	58.00%		3	15.79%	
M	SCADA and communications	SCADA and communications equipment operating as a single system	rot		5.88%		84.12%	10.00%	3	4.65%	
M	Capacitor Banks	Capacitors including controls	No.				100.00%		4		
M	Load Control	Centralised plant	Lot	1.62%		67.55%	20.83%	10.00%	4		
All	Load Control	Relays	No.						N/A		
M	Civile	Cable Tunnels	hm						N/A		

37

WEL Networks 1 April 2017 – 31 March 2027

Company Name AMP Planning Period

SCHEDULE 12B - REPORT OF FORECAST CAPACITY

SCHEDULE 12b; REPORT ON FORECAST CAPACITY
This schedule requires a breakdown of current and forecast capacity and utilisation for each zone substation and current distrib
provided in this table should relate to the operation of the network in its normal standy state coeffiguration.

					Utilisation of	!	Utilisation of		
	Current Peak Load	Installed Firm Capacity	Security of Supply Classification	Transfer Capacity	Installed Firm Capacity	Installed Firm Capacity +5 years	Installed Firm Capacity + Syrs	Installed Firm Capacity Constraint +5 years	
Existing Zone Substations	(MWA)	(MVA)	(type)	(MIVA)	×	(MVA)	×	(canse)	Explanation
Avalon Dr	17.5	23	N-1	11.4	76%	23	908	80% No constraint within +5 years	Load from AVA transfered to SAN
Berman	14.5	n	N-1	30.6	50.9	23	84%	84% Subtransmission circuit	Limited by the Incoming 33kV OH conductor to 20.6MVA Load increase due to natural growth
Bryce St	15.7	23	N-1	23.0	9089	23	64%	No constraint within +5 years	
Chartwell	15.9	23	N-1	15.0	9669	23	73%	No constraint within +5 years	
Claudelands	19.2	23	N-1	23.0	84%	23	90%	No constraint within +5 years	
Cobham	11.8	23	N-1	23.0	51%	23	53%	No constraint within +5 years	
Finlayton Rd	3.7	7.5	z	3.0	5667	7.5	49%	49% No constraint within +5 years	
Glasgow St	2.6	10	Z	8.0	76%	10	80%	80% No constraint within +5 years	
Gordonton	7.3	10	z	7.0	73%	10	277%	77% No constraint within +5 years	At present 2uSMVA transformer. Due to bus arrangement, practically regarded as an N-security site to 10MVA capacity.
Hampton Downs	6:0	10	z	20	906	10	17%	17% No constraint within +5 years	
Honogliu	9.1	18	N-1	18.0	50%	18	62%	62% No constraint within +5 years	
Kent St	16.4	23	N-1	23.0	71%	23	74%	74% No constraint within +5 years	
Krmihia	2.1	10	Z	2.0	21%	10	21%	No constraint within +5 years	Reduction most likely due to reduced mining load
Latham Court	18.6	23	N-1	14.0	81%	23	83%	No constraint within +5 years	
Hoeka Rd (winter peak will only be available in 2017)	0.0	23	Z	8.0		23	37%	No constraint within +5 years	Winter peak will be available in 2017
Ngaruswahia	5.4	7.5	N-1	7.5	72%	7.5	71%	No constraint within +5 years	
Peacockes Rd	14.2	23	N-1	12.0	62%	23	67%	No constraint within +5 years	
Pulete - Anchor (major customer)	17.7	30	N-1		965	8	%4.55	No constraint within +5 years	3-winding TX - share with Contact Energy. With embedded generation.
Publete - WEL's 11kV	8.2	15	N-1	12.6	24%	15	9888	55% No constraint within +5 years	3-winding TX - share with Contact Energy
Raglan	4.8	23	z	2.5	21%	23	22%	22% Subtransmission circuit	Umited by the incoming 33kV OH conductor. Transfer capacity is limited due to voltage regulation issue.
HAM 11 kV GXP	34.6	40	N-1	17.0	87%	40	69%	69% No constraint within +5 years	Oue to change in GXP development plan, consequential change in +5 years firm capacity and % utilisation.
Sandwich Rd	20.2	23	N-1	18.5	9898	23	9006	90% No constraint within +5 years	
Tacman	183	×	1 N	23.0	N. S.		31000	116% Transformer	Emergency rating at 25.9MVA, and will be upgraded to 30MVA in
Te Kauwhata	45	10	N-1	8.0	45%	10	49%	49% No constraint within +5 years	
Te Ultar	2.0	10	z	2.0	20%	10	22%	22% No constraint within +5 years	
Wallace Rd	13.5	23	N-1	15.4	2006	23	60%	60% Subtransmission circuit	Limited by the incoming 33kV OH conductor to 15,4MVA identified
Weavers	9.7	7.5	N-1	9.0	129%	9.5	127%	12736 No constraint within +5 years	Emergency rating 11.25MVA.
Whatswhats	4.2	23	Z	8.0	186	22	10%	the name of the collection of the con-	

7 8 8 8 7 7 7 7 7

schnef

50%

116

887 437

281

281

31 Mar 22

CV+S

1,223

SCHEDULE 12C - REPORT ON FORECAST NETWORK DEMAND

1 April 2017 - 31 March 2027 AMP Planning Period Company Name

1,140

CY+5 31 Mar 22

1,325

This schedule requires a forexast of new connections (by consumer type), peak demand and energy volumes for the disclosure year and a 5 year planning period. The forecasts should be consistent with the supporting information set out in the

1,310 4.7% 1,125 9 133 391 279 279 116 437 1,227 1,169 28 50% 165 CY+4 31 Mar 21 31 Mar 21 Š 1,110 1,232 165 유 437 (15) 28 51% 13 1,295 312 278 278 278 896 116 1,174 31 Mar 20 31 Mar 20 CV+3 C,+3 Number of connections 1,239 4.7% 1,095 9 18 3 1,284 250 276 276 116 1.181 51% 165 437 31 Mar 19 31 Mar 19 CY+2 CY+2 AMP as well as the assumptions used in developing the expenditure forecasts in Schedule 11a and Schedule 11b and the capacity and utilisation forecasts in Schedule 12b. 1,244 4.7% 1,065 165 9 23 1,254 200 274 274 908 116 437 1,186 28 52% CY+1 31 Mar 18 31 Mar 18 CY+1 1,258 1,176 1,260 273 1.200 28 4.6% Current Year CY 31 Mar 17 45 き 160 273 273 922 116 437 53% Current Year CY 31 Mar 17 for year ended for year ended SCHEDULE 12C: REPORT ON FORECAST NETWORK DEMAND Demand on system for supply to consumers' connection points Capacity of distributed generation installed in year (MVA) Net transfers to (from) other EDBs at HV and above Number of ICPs connected in year by consumer type Distributed generation output at HV and above Electricity supplied from distributed generation Maximum coincident system demand (MW) Net electricity supplied to (from) other EDBs Electricity entering system for supply to ICPs Large Customers - Medium Voltage 11kV Large Customers - Low Voltage 400V Large Customers - High Voltage 33kV Maximum coincident system demand Electricity volumes carried (GWh) *include additional rows if needed Consumer types defined by EDB* 12c(i): Consumer Connections Electricity supplied from GXPs Total energy delivered to ICPs Electricity exports to GXPs Asset Specific Customers Number of connections Unmetered Customers Distributed generation 12c(ii) System Demand **Business Customers** dential Custo Connections total Load factor Loss ratio Losses plus less less less less plus sch ref 8 9 01 16 17 18 18 19 20 21 2222222

SCHEDULE 12D - REPORT ON FORECAST INTERRUPTIONS AND DURATION

AMP Planning Period Company Name

1 April 2017 - 31 March 2027 WEL Networks

This schedule requires a forecast of SAIFI and SAIDI for disclosure and a 5 year planning period. The forecasts should be consistent with the supporting information set out in the AMP as well as the assumed impact of planned and

SCHEDULE 12d: REPORT FORECAST INTERRUPTIONS AND DURATION

unplanned SAIFI and SAIDI on the expenditures forecast provided in Schedule 11a and Schedule 11b.

sch ref

Network / Sub-network Name

Current Year CY 31 Mar 17 for year ended

31 Mar 19 CY+2 31 Mar 18 CY+1

42.9 63.4 42.9

> 33.1 67.3

> 42.9 62.7

> 42.9 62.7

42.9

62.7

31 Mar 22 CY+5

31 Mar 21

31 Mar 20 CY+3

63.1

0.30 1.33 0.30

0.30

0.23 1.30

0.30 1.33

0.30

Class C (unplanned interruptions on the network) Class B (planned interruptions on the network)

SAIF

Class B (planned interruptions on the network)

Class C (unplanned interruptions on the network)

8 9 10 11 12 13 14 15

DIRECTOR CERTIFICATION

DIRECTOR CERTIFICATION

CERTIFICATE FOR YEAR-BEGINNING DISCLOSURES

Pursuant to clause 2.9.1 of Section 2.9

We, **MARGARET DEVLIN**, and **PAUL MCGILVARY** being directors of WEL Networks Limited certify that, having made all reasonable enquiry, to the best of our knowledge –

- a) the following attached information of WEL Networks Limited prepared for the purposes of clause 2.6.1 and 2.6.5(3) of the Electricity Information Disclosure Determination 2012 in all material respects complies with that determination; and
- b) the prospective financial or non-financial information included in the attached information has been measured on a basis consistent with regulatory requirements or recognised industry standards.

Director

Date: 30 March 2017

Director

Date: 30 March 2017

CREATING AN INNOVATIVE ENERGY FUTURE

CONTACT US

Freephone: 0800 800 935
Main Office: 07 850 3100

114 Maui St, Te Rapa, Hamilton 3200 PO Box 925, Hamilton 3240

wel.co.nz